## TOSHIBA

Variable Speed Drive

## rosurer VF-AS3




High-performance Drive TOSVERT VF-AS3

Built-in Ethernet


Real Time Clock


Web Server


Video Guidance


Remote Sensor Monitoring

IoT / Industry 4.0 Ready

The high performance TOSHIBA VF-AS3 achieves high speed/real time network communication via embedded Ethernet without any optional devices, ready to meet the requirement of modern automation with IoT and Industry 4.0.
Also, VF-AS3 with TOSHIBA excellent motor control technology and hardware design helps for all your applications.

*A1 to A8 and A1E to A5E show frame size of the drives

| Contents |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Evolution to lot-Ready drive. $\cdots \cdots$ P3 | Standard specifications | P10 | For drive users | P19 |
| Ideal for various applications. . . . . . . P5 | External dimensions . . . . . . . . | P15 | Peripheral devices | P23 |
| All-in-One. Improvement in Usability. . P7 | Standard connection diagrams | P17 | Insert type options | P24 |
| Basic functions ........................ P9 | Terminal functions | P18 | Totally enclosed box type for IP55 | P34 |

Evolution to loT-Ready drive.
The VF-AS3 is an loT-Ready variable speed drive. Using Internet, the VF-AS3 provides various solutions to you.


Built-in Dual Ethernet Port
The VF-AS3 has an embedded Ethernet dual port adaptor that can be used in the following Modbus TCP and EtherNet/IP. The adaptor provides a set of services at the Ethernet and TCP/IP level.
The dual Ethernet port adaptor offers an embedded Web server which offers comfortable displaying and commissioning functions directly from a standard web browser.
The VF-AS3 supports the following Automatic IP address assignment via BOOTP and DHCP and Diagnostics and configuration via integrated Web server

## Remote Sensor Monitoring

The sensor which is equipped in the machine and equipment, can be connected with VF-AS3 and the status can be monitored by network communication.


## IoT Systems Solution

-Ideal for Plant \& Process Control Application
The VF-AS3 can be connected with various devices through local area network, wireless network, and the Internet. It achieves data collection to know operational status and analyze system failure.
This loT-Ready function increase productivity and reduce total cost.



PLC Ethernet TCP/P

## Ideal for various applications.

The VF-AS3 has various functions dedicated to various applications.
The VF-AS3 will be the ideal choice for a wide variety of uses.

## For Oil \& Gas / Mining Industry

Jack pumps / Compressor / Conveyor / Crushers

## Multi ratings - excellent motor control performance

The VF-AS3 has the multi ratings and can drive for various application with HD(150\% 60 sec) and ND(120\%-60sec). It is available for both heavy-load application and light-load ,
The starting torque with sensor-less vector control is $200 \%$ with 0.3 Hz or more. The VF-AS achieves high starting torque and high accuracy regenerative torque at low frequency.

## Easy to set up with Auto-tuning function

The VF-AS3 has the Auto-tuning function that automatically optimizes the drive parameters. The moment of inertia of machine and equipment can also be set easily by Auto-tuning function.


## PM motor drive

PM motor drive technology has been implemented in VF-AS3 as a standard feature. The VF ous motors with/withou ty of purposes
The VF-AS3 can drive both interior permanent magnetic motor (IPM) and surface permanent magnetic motor (SPM).


## For Conveyor / Crane Industry

Transportation machine / Conveyor / Crushers / Compressor

## Embedded positioning control

VF-AS3 has sensor / sensor-less position control with point to point, Pulse input and Orientation, which is suitable for applications such as processing machine for high precision control.

## Excellent flexibility by My Function (logic function)

My function adds programming capability to the drive's input/output signals without external relays or PLC (programmable logic controller). The function makes it possible to reduce the space and cost required for the system.
My function has the relay sequence function that combines logic operation functions. The relay sequence function enables the drive to perform itself in 52 steps ( 4 steps $\times 7$ units +
24 steps) without PLC. The processing speed is faster than control with PLC as the function uses internal data and signals directly.

## For Water \& Wastewater Industry <br> Fan / Pump / Centrifuges

## Multi pump control - maximum 10 pumps

The VF-AS3 can drive multiple pump motors (maximum ten pumps) and save the power of water pump system by controlling each pump appropriately, realizing great cost reduction. Each pump is connected to commercial power via magnetic contactor which is controlled by relay output signal of the drive.
There are 3 relay output terminals on the drive. Furthermore, two I/O extensions can be inserted to the drive Each $/ / \mathrm{O}$ extension has 3 relay output terminals, and thus a maximum 9 relay output terminals can be used.


Space-saving and cost reduction by four embedded PID controllers VF-AS3 has four built-in PID controllers: two for drives (motors) and other two for othe devices including heaters and valves. The built-in PID controllers are available at the same
time for many purposes. It can help reduce cost and space because it can omit additiona external PID controllers.
The PID functions include temperature or pressure control of fan and pump, speed control of a winder, stop position control, etc.


## For Chemical / Pharmaceutical Industry

Pumps / Mixers / Compressor / Centrifuges / Fans

Enhanced environment resistance

- Comply with the chemicals (3C3)/dust (3S3) standards of IEC60721-3-3. (Frame size A6 or smaller)
- Can be used at an altitude of up to 4800 m (Frame size A6 or smaller)
- The inverter is operable at an ambient temperature of -15 to $+60^{\circ}$. (Frame size A7, A8: -10 to $+60^{\circ} \mathrm{C}$
- The design expectancy life time of the cooling fan smoothing aluminum electrolytic capacitor for power circuit, years. (Fan of frame size A7, A8: Five years) years. (Fan of frame size A7, A8. Five years) *Average ambient temperature $40^{\circ}$, load factor $80 \%$ or less, 24 -hour and
365 days operation



## All-in-One. Improvement in Usability.

The VF-AS3 allows various functions without external options.
The VF-AS3 realizes improvement in usability and cost reduction.
Not necessary to prepare optional devices separately.

## Reliable safety function

The VF-AS3 has STO (Safe Torque Off) function as standard and is highly reliable to cut off output in an emergency.
The STO function brings the machine safely into a no-toraue state and prevents it from starting accidentally.

It complies with safety standard IEC 61800-5-2 and also achieves SIL3 level in IEC 61508 : 2010

In addition, the following safety functions are available as options:
-SS1 (Safe Stop 1)
SOS (Safe Operating Stop)
SS2 (Safe Stop 2)
SBC (Safe Brake Control)
SLS (Safely-Limited Speed)
SDI (Safe Direction)


## Harmonics reduction

The VF-AS3 is very friendly to a power supply system and peripheral equipment. The built-in dual DC reactor ${ }^{(\text {(l) }}$ suppresses harmonic current and improves power factor. VF-AS3 complies with IEC61000-3-12 and achieves total harmonic distortion (THDi) $\leqq 48 \%$ without external reactor. ( 480 V Class only)
(1) Frame size A7,A8: Attached DCL


## High-frequency noise reduction

The built-in EMC filter suppresses high frequency noise. The filter is ideal for sites such as commercial facilities, offices and
factories where attentions must be paid to peripheral devices. The VF-As3 The VF-AS3 complies with EMC directive of IEC61 800-3
Category C2/C3 without external filter. (480V Class only) Category C2/C3 without external filter. (480V Class only) In addition, the VF-AS3 has built-in UL Type 1 terminal box integrated with EMC plate.


## Detachable operation panel

The operation panel is detachable and easy to attach an external control console with door mounting kit. The optiona panel is not required.
The protection level of the keypad is enclosed type with doo mounting kit, which means dust-proof and wash-down capable The touch wheel has high sensitivity, which allows easy, smooth operation.


Wide, multi-language LCD screen (HMI)
The wide LCD screen ( $240 \times 160$ dots) displays multiple items at the same time, allowing easy setting of parameters.
If the VF-AS3 trips, the panel will turn red in back light color, and it's easy to recognize.

The panel can be displayed in multiple languages includin German, Italian, Spanish, French, Portuguese, Russian
Chinese and Japanese as well as English.


Detachable control terminal block
Detachable terminal block allows you to use the current control wiring when replacing the drive. It also makes maintenance much easier.


## Various options

 sensor feedback, and safety function can be added easily.

## Communication network:

PROFINET ${ }^{\left({ }^{(1)}\right)}$, PROFIBUS-DP ${ }^{(4)}$, DeviceNet $^{\text {TMM }}$ (2), EtherCAT $^{\oplus(3)}$, CANopen $^{\oplus(4)}$ (4)
(1) PROFINET Tand PROFIBUS-DP are registered trademarks of PROFIBUS and PROFINET International.
(2) Devicenetm is registered trademark of OVVA.




Inputs/Outputs:
Digital \& Analog I
Digital \& Analog I/Os: 6-Digital Input, 2-Digital Output, 2-Analog Input
Relays: 3-Relay
Safety:
Safety option (SS1, SOS, SS2, SBC, SLS, SDI)
Sensor feedback:
Digital encoder: RS422 Line receiver
Resolver


## Basic functions

Each "setup item" that determines the control characteristics of the drive is called a "parameter" For example, to change the acceleration time, you choose the acceleration time parameter (titled "ACC").

## Easy mode

To enter the Easy mode, press the 1 to F4 key of Easy marking on the panel. in this mode, you can set ten of the basic parameters.


Setting mode
In this mode, you can set all parameters.
For details of parameters, refer to the Instruction Manual.

|  |  |
| :---: | :---: |
| CMOd | Run command select |
| FMOd | Frequency command select 1 |
| ACC | Acceleration time 1 |
| dEC | Deceleration time 1 |
| UL | Upper limit frequency |
| LL | Lower limit frequency |
| thrA | Motor overload protection current 1 |
| FM | Terminal FM adiustment |
| F701 | Current, voltage units select |
| PSEL | Parameter mode select |

## Basic parameters



For details on extended parameters, advanced parameters and communication parameters, please visit our web site (http://www.inverter.co.jp/)

## Standard specifications

## Standard specifications

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage class |  |  | 240 V class |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Frame size |  |  | A1 |  |  |  | A2 | A3 |  | A4 |  |  | A5 |  |  | A6 |  |
| Applicable motor (kW) |  |  | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 |
| Applicable motor (HP) |  |  | 0.5 | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 75 |
| d | Type |  | VFAS3- |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Form |  | 2004P | 2007P | 2015P | 2022P | 2037P | 2055P | 2075P | 2110P | 2150P | 2185P | 2220P | 2300P | 2370P | 2450P | 2550P |
|  | Output | apacity (kVA) ${ }^{1}$ | 1.3 | 1.8 | 3.0 | 4.3 | 7.1 | 9.7 | 12.5 | 17.8 | 24.2 | 29.9 | 35.3 | 46.9 | 56.8 | 67.1 | 80.4 |
|  | Output | current (A) ${ }^{\text {2 }}$ | 3.3 | 4.6 | 8.0 | 11.2 | 18.7 | 25.4 | 32.7 | 46.8 | 63.4 | 78.4 | 92.6 | 123 | 149 | 176 | 211 |
|  | Output | voltage | 3 -phase 200 V to 240 V (The maximum output voltage is equal to the input supply voltage) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Overload | current rating | 150\%-1 minute, 180\%-2 s |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking circuit | Builtin ${ }^{\text {a }}$ Optional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking resistor | External braking resistor (Optional) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage | -frequency | 3-phase 200 V to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$Voltage 170 V to 264 V . Frequency $+5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 0.7 | 1.4 | 2.4 | 3.7 | 5.9 | 7.7 | 10.5 | 15.7 | 20.6 | 24.9 | 30.7 | 40.5 | 49.6 | 61.0 | 73.3 |
| Degree of protection (IEC60529) |  |  | IP20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Cooling method |  |  | Forced air-cooled |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Color |  |  | RAL7016 / RAL7035 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EMC filter (IEC61800-3) |  | Built-in filter | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | Externa fiter ${ }^{\text {s }}$ | C2-50m (Carrier frequency: 4.0 kHz ), C3-150m ( 4.0 kHz ) |  |  |  |  |  |  |  |  |  | C2-50m (2.5 kHz), C3-150m (2.5 kHz) |  |  |  |  |
| DC reactor |  |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| UL type1 kit |  |  | Built-in ${ }^{\text {a }}$ Optional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage class |  |  | 480 V class |  |  |  |  |  |  |  |  |  |  |  |  |
| Frame size |  |  | A1 |  |  |  |  | A2 |  | A3 |  |  | A4 |  |  |
| Applicable motor (kW) |  |  | 0.4 | 0.75 | 1.5 | 2.2 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 |
| Applicable motor (HP) |  |  | 0.5 | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 |
|  | Type |  | VFAS3- |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Form |  | 4004PC | 4007PC | 4015PC | 4022PC | 4037PC | 4055PC | 4075PC | 4110PC | 4150PC | 4185PC | 4220PC | 4300PC | 4370PC |
|  | Output c | apacity (kVA) ${ }^{4}$ | 1.1 | 1.7 | 3.0 | 4.3 | 7.1 | 9.7 | 12.6 | 17.9 | 24.2 | 29.9 | 35.3 | 46.9 | 56.8 |
|  | Output c | urrent (A) ${ }^{\text {2 }}$ | 1.5 | 2.2 | 4.0 | 5.6 | 9.3 | 12.7 | 16.5 | 23.5 | 31.7 | 39.2 | 46.3 | 61.5 | 74.5 |
|  | Output v | oltage | 3 -phase 380 V to 480 V (The maximum output voltage is equal to the input supply voltage) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Overload | current rating | 150\%-1 minute, 180\%-2 s |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking circuit | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking resistor | External braking resistor (Optional) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage-f | requency | 3 -phase 380 V to 480 V - $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Allowable | fluctuation | Voltage 323 V to $528 \mathrm{~V}{ }^{\text {³ }}$, Frequency $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & \text { Required } \\ & \text { capacity } \\ & \hline \end{aligned}$ | power supply $(\mathrm{kVA})^{*}$ | 0.7 | 1.4 | 2.6 | 3.9 | 6.6 | 8.5 | 11.4 | 16.6 | 22.3 | 27.3 | 32.7 | 44.3 | 53.9 |
| Degree of protection (IEC60529) |  |  | IP20 |  |  |  |  |  |  |  |  |  |  |  |  |
| Cooling method |  |  | Forced air-cooled |  |  |  |  |  |  |  |  |  |  |  |  |
| Color |  |  | RAL7016 / RAL7035 |  |  |  |  |  |  |  |  |  |  |  |  |
| EMC filter (IEC61800-3) |  | Built-in filter | C2-50m (Carrier frequency: 4.0 kHz ), C3-150m ( 4.0 kHz ) |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | External filter ${ }^{\text {5 }}$ | C2-150m (Carrier frequency: 4.0 kHz ), C3-300m ( 4.0 kHz ) |  |  |  |  |  |  |  |  |  |  |  |  |
| DC reactor |  |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |
| UL type1 kit |  |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |


| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage class |  |  | 480 V class |  |  |  |  |  |  |  |  |  |  |  |  |
| Frame size |  |  | A1 |  |  |  |  | A2 |  | A3 |  |  | A4 |  |  |
| Applicable motor (kW) |  |  | 0.75 | 1.5 | 2.2 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 |
| Applicable motor (HP) |  |  | 1 | 2 | 3 | 5 | 7.5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 |
|  | Type |  | VFAS3- |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Form |  | 4004PC | 4007PC | 4015PC | 4022PC | 4037PC | 4055PC | 4075PC | 4110PC | 4150PC | 4185PC | 4220PC | 4300PC | 4370PC |
|  | Output ca | apacity (kVA) ${ }^{-1}$ | 1.7 | 3.0 | 4.3 | 7.1 | 9.7 | 12.6 | 17.9 | 24.2 | 29.9 | 35.3 | 46.9 | 56.8 | 67.1 |
|  | Output cur | urent (A)*2 | 2.2 | 4.0 | 5.6 | 9.3 | 12.7 | 16.5 | 23.5 | 31.7 | 39.2 | 46.3 | 61.5 | 74.5 | 88.0 |
|  | Output vo | Itage | 3 -phase 380 V to 480 V (The maximum output voltage is equal to the input supply voltage) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Overload current rating |  | 120\%-1 minute, $135 \%-2 \mathrm{~s}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking circuit | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Dynamic | braking resistor | External braking resistor (Optional) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage-frequency |  | 3 -phase 380 V to $480 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | Voltage 323 V to 528 V , , Frequency $\pm 5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Required capacity | power supply (kVA) *4 | 1.2 | 2.4 | 3.4 | 6.1 | 8.3 | 10.9 | 15.6 | 21.3 | 26.4 | 31.4 | 42.0 | 52.4 | 63.2 |
| Degree of protection (IEC60529) |  |  | IP20 |  |  |  |  |  |  |  |  |  |  |  |  |
| Cooling method |  |  | Forced air-cooled |  |  |  |  |  |  |  |  |  |  |  |  |
| Color |  |  | RAL7016 / RAL7035 |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { EMC filter } \\ & \text { (IEC61800-3) } \end{aligned}$ |  | Buil-in filter | C2-50m (Carrier frequency: 4.0 kHz ), C3-150m ( 4.0 kHz ) |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | External filter ${ }^{\text {5 }}$ |  |  |  | C2-15 | m (Carri | er freque | ency: 4.0 | kHz), C3 | 300m | . kHz ) |  |  |  |
| DC reactor |  |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |
| UL type1 kit |  |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |


| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voltage class |  |  | 480 V class |  |  |  |  |  |  |  |  |  |
| Frame size |  |  | A5 |  |  | A6 |  |  | A7 | A8 |  |  |
| Applicable motor (kW) |  |  | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 280 |
| Applicable motor (HP) |  |  | 60 | 75 | 100 | 125 | 150 | 200 | 250 | 300 | 350 | 450 |
|  | Type |  | VFAS3- |  |  |  |  |  |  |  |  |  |
|  | Form |  | 4450PC | 4550PC | 4750PC | 4900PC | 4110KPC | 4132KPC | 4160KPC | 4200KPC | 4220KPC | 4280KPC |
|  | Output ca | pacity (kVA) ${ }^{41}$ | 67.1 | 80.8 | 111 | 132 | 161 | 191 | 239 | 295 | 325 | 419 |
|  | Output cu | rrent (A) ${ }^{\text {2 }}$ | 88.0 | 106 | 145 | 173 | 211 | 250 | 314 | 387 | 427 | 550 |
|  | Output vo | Itage | 3 -phase 380 V to 480 V (The maximum output voltage is equal to the input supply voltage) |  |  |  |  |  |  |  |  |  |
|  | Overload | current rating | 150\%-1 minute, 180\%-2 s |  |  |  |  |  | 150\%-1 minute, 165\%-2 s |  |  |  |
|  | Dynamic | braking circuit | Built-in |  |  | Optional |  |  | Built-in | Optional |  |  |
|  | Dynamic | braking resistor | External braking resistor (Optional) |  |  |  |  |  |  |  |  |  |
| 흥 | Voltage-fr | equency | 3 -phase 380 V to $480 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ |  |  |  |  |  | $\begin{aligned} & \text { 3-phase } 380 \text { to } 440 \mathrm{~V}-50 \mathrm{~Hz} \text {, } \\ & \text { 3-phase } 380 \text { to } 480 \mathrm{~V}-60 \mathrm{~Hz} \end{aligned}$ |  |  |  |
|  | Allowable | fluctuation | Voltage 323 V to 528 V "3, Frequency $\pm 5 \%$ |  |  |  |  |  | Voltage 323 to $484 \mathrm{~V}-50 \mathrm{~Hz}$, 323 V to $528 \mathrm{~V}-60 \mathrm{~Hz}^{* 3}$, Frequency $\pm 5 \%$ |  |  |  |
| 亳 | Required capacity | power supply (kVA) ${ }^{* 4}$ | 65.6 | 79.5 | 108 | 133 | 155 | 181 | 225 | 275 | 308 | 379 |
| Degree of protection (IEC60529) |  |  | IP20 |  |  | IPOO |  |  |  |  |  |  |
| Cooling method |  |  | Forced air-cooled |  |  |  |  |  |  |  |  |  |
| Color |  |  | RAL7016 / RAL7035 |  |  |  |  |  |  |  |  |  |
| EMC filter (IEC61800-3) |  | Buil-in filter | C3-150m ( 2.5 kHz ) |  |  |  |  |  | C3-50m ( 2.5 kHz ) |  |  |  |
|  |  | External filter ${ }^{\text {² }}$ | C2-150m ( 2.5 kHz ), C3-300m ( 2.5 kHz ) |  |  |  |  |  | C2-100m (2.5 kHz) |  |  |  |
| DC reactor |  |  | Built-in |  |  |  |  |  | Attached |  |  |  |
| UL type1 kit |  |  | Built-in |  |  | Optional |  |  | - |  |  |  |

 ${ }^{*}$ *: Required power supply capacity varies with the value of the power supply side inverter impedance (inclucing those of the input reactor and wires. ${ }^{*}$ : Contact your Toshibaa distribibutor for dodetail.

| Common Specifications |  |  |
| :---: | :---: | :---: |
|  | Item | Specification |
|  | Control system | Sinusoidal PWM control |
|  | Output voltage adjustment | Adjustable within the range of 50-330 V ( 240 V class) and $50-660 \mathrm{~V}$ ( 480 V class) by correcting the supply voltage |
|  | Output frequency range | Setting between $0.01-590 \mathrm{~Hz}$. Default max. frequency is set to $0.01-80 \mathrm{~Hz}$. Maximum frequency adjustment ( 30 to 590 Hz ) |
|  | Minimum setting steps of frequency | 0.01 Hz : operation panel input ( 60 Hz base), 0.03 Hz : analog input ( 60 Hz base, $11 \mathrm{bit} / 0-10 \mathrm{Vdc}$ ) |
|  | Frequency accuracy | Analog input: $\pm 0.2 \%$ of the maximum output frequency (at $25 \pm 10^{\circ} \mathrm{C}$ ) Digital input: $\pm 0.01 \% \pm 0.022 \mathrm{~Hz}$ of the output frequency |
|  | Voltage/frequency characteristics | V/f constant, variable torque, automatic torque boost, vector control, PM motor control, base frequency adjustment $1,2,3$, and $4(15-590 \mathrm{~Hz})$, V/f 5 -point arbitrary setting, torque boost adjustment ( $0-30 \%$ ), start frequency adjustment $(0-10 \mathrm{~Hz})$, stop frequency adjustment $(0-30 \mathrm{~Hz})$ |
|  | Frequency setting signal | $3 \mathrm{k} \Omega$ potentiometer (possible to connect to $1-10 \mathrm{k} \Omega$-rated potentiometer) <br> $0-10 \mathrm{Vdc}$ (input impedance Zin: $31.5 \mathrm{k} \Omega$ ) <br> -10 to $+10 \mathrm{Vdc}(\mathrm{Zin}: 31.5 \mathrm{k} \Omega$ ) <br> 4-20 mAdc (Zin: $250 \Omega$ ) |
|  | Terminal block frequency command | The characteristic can be set arbitrarily by two-point setting. Compliant with 7 types of input; analog input (RR, RX, II, AI4, AI5), and pulse input (S4, S5) |
|  | Frequency jump | Three frequency can be set. Setting of jump frequency and width. |
|  | Upper and lower limit frequencies | Upper limit frequency: 0 to max. frequency, lower limit frequency: 0 to upper limit frequency |
|  | PWM carrier frequency | Frame size A1 to A4: adjustable between $1.0-16 \mathrm{kHz}$ Frame size A5 to A8: adjustable between $1.0-8.0 \mathrm{kHz}$ |
|  | PID control | Adjustment of proportional gain, integral time, differential time and delay filter. Multi PID and external PID control. |
|  | Torque control | Voltage command input specification: $-10-+10 \mathrm{Vdc}$ |
|  | Real Time Clock (RTC) | Current time (year, month, date, hour, minute), Timezone, Daylight saving time, 4 work days and 20 holidays can be set by parameters |
|  | Acceleration/deceleration time | $0.01-6000 \mathrm{sec}$. Selectable from among acceleration/deceleration. times $1,2,3$ and 4. Automatic acceleration/deceleration function. S-pattern acceleration/deceleration 1 and 2 pattern adjustable. |
|  | DC braking | Adjustment of braking start frequency ( $0-[\mathrm{FH}] \mathrm{Hz}$ ), braking ( $0-100 \%$ ) and braking time ( $0-25.5$ sec.). With emergency off braking function and motor shaft fix control function. |
|  | Forward run/reverse run ${ }^{11}$ | Forward run with ON of the terminal [F], Reverse run with ON of the terminal [R] (Default setting). Coast stop with OFF of the terminal assigned Stad-by function. Emergency off by panel operation or terminal. |
|  | Jog run ${ }^{1+}$ | Jog run, if selected, allows jog operation from the operation panel Jog run operation by terminal block is possible by setting the parameters. |
|  | Preset speed operation ${ }^{* 1}$ | By changing the combination of the terminals [S1], [S2], [S3], [S4], [S5] set frequency + 31-speed operation. Selectable between acceleration/deceleration time, torque limit and V/f by set frequency. |
|  | Retry | Capable of restarting after a check of the power circuit elements in case the protective function is activated. Max. 10 times selectable arbitrarily. Waiting time adjustment ( $0-10 \mathrm{sec}$.) |
|  | Soft stall | Automatic load reduction control at overloading. (Default: OFF) |
|  | Cooling fan ON/OFF | The cooling fan will be stopped automatically to assure long life when unnecessary. |
|  | Lockout key operation/Password setting | Lock or unlock the key operation and parameter setting. Lock parameter setting with a password. |
|  | Regenerative power ride-through control | Possible to keep the motor running using its regenerative energy in case of a momentary power failure. (Default: OFF) |
|  | Auto-restart operation | Possible to restart the motor in coasting in accordance with its speed and direction. (Default: OFF) |
|  | Simplified pattern operation | Possible to select each 8 patterns in 2 groups from 15-speed operation frequency. Max. 16 types of operation possible. Terminal operation/repeat operation possible. |
|  | Commercial inverter switching | Possible to switch operation by commercial power supply or inverter |
|  | Light-load high-speed operation | Increases the operating efficiency of the machine by increasing the rotational speed of the motor when it is operated under light load. |
|  | Droop function | When two or more inverters are used to operate a single load, this function prevents load from concentrating on one inverter due to unbalance. |
|  | Override function | External input signal adjustment is possible to the operation frequency command value. |
|  | Protective function | Stall prevention, current limit, overcurrent, overvoltage, short circuit on the load side, ground fault on the load side ${ }^{* 4}$, undervoltage, momentary power failure ( 15 ms or more), non-stop control at momentary power failure, overload protection, arm overload at starting, overcurrent on the load side at starting, overcurrent and overload at braking resistor, overheat, emergency off |
|  | Electronic thermal characteristic | Switchable between standard motor/constant torque motor, adjustment of overload protection and stall prevention level. |
|  | Reset | Reset by 1 a contact closed (or 1b contact opened), or by operation panel. Or power supply OFF/ ON. This function is also used to save and clear trip records. |

(Continued)

| Item |  |  | Specification |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \frac{0}{0} \\ & \frac{0}{0} \\ & \frac{5}{2} \\ & \frac{0}{0} \\ & \frac{\overline{0}}{0} \end{aligned}$ | Screen of LCD | Alarms | Stall prevention during run, overload limit, overload, undervoltage on power supply side, DC circuit undervoltage, setting error, in retry, upper limit, lower limit. |
|  |  | Causes of failures | Overcurrent, overvoltage, overheat, short circuit on the load side, ground fault on the load side, inverter overload, arm overcurrent at starting, overcurrent on the load side at starting, Cooling fan fault, CPU fault, EEPROM fault, RAM fault, ROM fault, communication error, (braking resistor overcurrent/overload), (emergency off), (undervoltage), (undercurrent), (overtorque), (motor overload), (input phase failure), (output phase failure) The items in the parentheses are selectable. |
|  |  | Monitoring function | Output frequency, frequency command, forward run/reverse run, output current, DC voltage, output voltage, compensated frequency, terminal input/output information, CPU version, past trip history, cumulative operation time, feedback frequency, torque, torque command, torque current, exiting current, PID feedback value, motor overload factor, inverter overload factor, PBR overload factor, PBR load factor, input power, output power, peak output current, peak DC voltage, RR input, II input, RX input, A14 input, Al5 input, FM output, AM output, expansion I/O card option CPU version, integral input power, integral output power, communication option reception counter, communication option abnormal counter. |
|  |  | Free unit display | Display of optional units other than output frequency (motor speed, line speed, etc), current ampere/\% switch, voltage volt/\% switch |
|  |  | Automatic edit function | Searches automatically parameters that are different from the default setting parameters. Easy to find changed parameters. |
|  |  | User default setting | User parameter settings can be saved as default settings. Allows to reset the parameters to the user-defined parameter settings. |
|  | LED | Charge display | Displays power circuit capacitor charging. |
| Input/output terminal logic function |  |  | Possible to select positive logic or negative logic with programmable input/output terminal function menu. 2 or 3 function can be assigned for some terminals. ${ }^{* 1}{ }^{* 2}$ (Default setting: positive logic) |
| Sink/source switching |  |  | Possible to switch between minus common (CC) and plus common (P24) for digital input terminal. (Default setting: external power supply) |
|  | Failure detection signal |  | 1 c contact output (250Vac-2A ( $\cos \Phi=1$ ), 30Vac-2A (Resistive), 250Vac=1A $(\cos \Phi=0.4)$, $30 \mathrm{Vdc}=1 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$ ) |
|  | Relay output |  | $2 \times 1 \mathrm{a}$ contact output (250Vac-2A( $\cos \Phi=1$ ), 30Vac-2A (Resistive), 250Vac $=1 \mathrm{~A}(\cos \Phi=0.4)$, $30 \mathrm{Vdc}=1 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$ ) |
|  | Low speed, Acc/Dec completed signal output ${ }^{*}{ }^{2}$ |  | Digital output (24 Vdc, max. 50 mA ) |
|  | Output for frequency meter/Output for ammeter ${ }^{*}$ |  | Analog output for meter: 1 mA dc full-scale dc ammeter <br> 0-20 mA (4-20 mA) output: DC ammeter (allowable load resistance: $500 \Omega$ or less) <br> $0-10 \mathrm{~V}$ output: DC voltmeter (allowable load resistance: $1 \mathrm{k} \Omega$ or more) |
|  | Pulse train frequency output |  | Pulse train output (Up to 30 kpps , duty 50\%) |
| Communication function |  |  | Ethernet standard 2-channel equipped (connector: RJ45) IEEE802.3/IEEE802.3u (Fast Ethernet) (10/100Mbps: Auto negotiation) RS485 standard 2-channel equipped (connector: RJ45) PROFINET, DeviceNet, PROFIBUS-DP, EtherCAT are optional. |
|  | Use environments |  | Indoor use. Altitude: 4800 m or less for frame size A1 to A6, 3000 m or less for frame size A7 and A8 (current reduction necessary when above $1000 \mathrm{~m} *$ *6). Place not exposed to direct sunlight and free of corrosive and explosive gases. |
|  | Ambient temperature |  | -15 to $+60^{\circ}{ }^{\circ}{ }^{-5}$ <br> Frame size A1 to A5: Current reduction, remove the top cover when above $50^{\circ} \mathrm{C}$; <br> Frame size A6: Current reduction when above $50^{\circ} \mathrm{C}$; <br> Frame size A7 and A8: Current reduction when above $50^{\circ} \mathrm{C}$ (HD), above $45^{\circ} \mathrm{C}$ (ND) |
|  | Storage tempe | ature | -25 to $+70^{\circ} \mathrm{C}{ }^{7}$ |
|  | Relative humid |  | 5 to 95\% (free from condensation) |
|  | Vibration |  | Frame size A1 to A5: $5.9 \mathrm{~m} / \mathrm{s}^{2}\{0.6 \mathrm{G}\}$ or less ( $10-55 \mathrm{~Hz}$ ), Frame size A6 to A8: $2.9 \mathrm{~m} / \mathrm{s}^{2}\{0.3 \mathrm{G}\}$ or less ( $10-55 \mathrm{~Hz}$ ) |

9: 14 digitial innut terminals (of which 6 are options) are programmable digital input terminals, and they make it possible to arbitrarily select from 178 types of signals.
²: Programmable on/OFF output terminals make it possible to arbitrarilis selecet trom 256 types of signals.
${ }^{2}$ 3: Programmable analog output terminals make it possible to arbitrarily select trom 54 types of signals.



## (Continued overleaf)

## External dimensions



## Frame Size A4


Frame Size A5


## Standard connection diagrams

## -Standard connection diagram

: Sink logic (common: CC
Standard connection diagram : Source logic (common : P24)


1: EMC filter is built in 480 V clas


*6: Whtornation inverter is used with a DC power supply, three-phase power input for cooling fan driving is required separately for models VFAS3-4160KPC to 4280 KPC .


and [S1] - [S5] is switched. [SWW] is set to the PLC side in the defalt setting. This is the setting when the inverter external power supply is used.
"11: To supply control power trom an external power supply for backing up the control power supplied from the inverter, an optional control power supply unit (CPSSOO2Z) is

SSt IF647: Control power option failure detection) to back up the control power suppl.


## Terminal functions

| Power terminal |
| :--- |
| Perminal <br> Terminal symbol |
| Grounding temminal for inverter case. |

Control termina


## For drive users

When studying how to use our drives

## Notes

Leakage current
This drive uses high-speed switching devices for PWM control. When a relativell long cable is used for power supply to a drive, current may leak
from the cable or the motor to the ground because of tis capacitance, adversely affecting caberipheral equitipment. The intensity of such a leakacace current depends on the PWM carier frequency, the lengths of the input and output cables, etc., of the
drive. To prevent current leakage, it is recommended to take the following measures.
[Effects of leakage current]
Leakage current which increases when a drive is used may pass through the
Route (1) ... Leakage due to the capacitance between the ground and the noise fiter Route (2)... Leakage due to the capacitance between the ground and the drive
Route (3)... Leakege due to the capacitance between ground and the cable Route (4) ... Leankecting the drive and the motor
()... Leakage due to the capacitance of the cable connecting the moto and a drive in anothe power distribution line
Route (5)... Leakage through the grounding line common to motors
Leaket (6)... Leakage to another line because of the capacitance of the ground - Maltur
 power distribution line
-Malunction of a ground-relay installed in the same or another power distribution line
Noise produced at the output of an electronic device in another power distribution
Nine - Noise
line

- Activat

Activation of an external thermal relay installed between the drive and the motor,
Powe suppyy
[Measures against effects of leakage current]
The measures against the effects of leakage current are as follows:
Measures to prevent the mafrunction of tccis
(1) Decrease the PWM carrier frequency of the drive.
(2) Us radio-frequency interference--proof ELCBS as ground-falt interupters in
not only the system into which the drive is incorporated but also other systems. When olCEss are used, the PWM carrier frequencony needs to be increaseed to When ELEBs are
(3) When connecting multiple drives to a single ELCB, use an ELCB with a high
current sensitivity or reduce the number of drives connected to the ELCB.
2) Measures againsty maltunction tof groumber of fald rives reay:
(1) Decrease the PWM carrien frequench of oround-fault the drive. Nows with a high-frequency protective function in both the same and other lines. When ELCBS are used, the PWM carrier frequency need
to be increased to operate the drive. to be increased to operate the drive.
3) Measures against noise produced by other electric and electronic systems:
(1) Separate the grounding ine of the drive from that of the affected electric and (2) Decrease the PWM carrier frequency of the drive. ${ }^{\text {Noes }}$
4) Measures against maltunction of extermal thermal relays:
ive instead of drive instead of it. (Unapplicable to cases where a single drive is used to drive
more than one motor. Refer to the instruction manual for measures to be taken When thermal relays cannot be removed.)
D.
Decrease the PWM carrier frequency of the drive. .Noes
5) Measures by means of wiring and grounding
(1) Usea a grounding wire a slarge as possible.
(2) Separate the drive's grounding wire trom that of other systems or install the grounding wire of each system separately to the groundsing gooint. (3) Ground Ssieldat the power circuit wires with metallic conduits.
(4) Use the shortest possibl wires to connect the drive to the motor.
(5) If the drive has a high-attenuation EMC filter, turn off the grounding capacitor detachment suitct thor otenuuce the leakage $c$



## Ground fault

Before begining operation, thoroughly check the wiring betwen the motor and the
drive for incorrect wiring or short circuits. Do not ground the neutral point of any star-connected motor.

## Radio interference

[Noise produced by drives]
Since this drive performs PWM control, it produces noise and sometimes affects nearby instrumental devices, electrical and electronic systems, etc. The effects
of noise greaty vary with the noise resistance of each individual device, its wiring of noise greaty vary with the noise resistance ove etc
condition, the distance between it and the drive, etc

## condition, the distance ebetu [Measures against noises]

Accorring got the e route through which noise is transmitted, the noises sroduced by a
drive are classified into transmission noise, induction noise and radiation [Examples of protective measures]

- Separate the power line from other lines, such
- Install a noise filter in each drive. It is effectiv
noise filters in other devices and systems, as well--Shield cables and wires with grounded metallic conduits, and cover electronic
systems with grounded metallic cases.
- Separate the power distribution line of the drive from that of other devices and systems.
Instal the
-Use shielded twisted pair wires of t whiring of the weak--uurent and signal circuits, and always ground one of each pair of wires. -Ground the drive with grounding wires as large and short as possible, separately In 480 V modelis, noise can be greatly reduced as they have a built-in EMC nois filter on their input side.


Power factor improvement capacitors
Do not install a power factor improvement capacitors on the input or output side of
the drive the drive.
Instaling a power factor improvement capacitor on the input or output side causes
curent affecting the capacitor itself or causing the drive to trip. To improve the powe Installation of input AC rectors
These devices are used to improve the input power factor and suppress high
harmonic currents and surges. Install an input AC reactor when using this drive harmonic currents and surfess
(1) When the power supply capacity is 500 KVA or more, and when it is 10 times more greater than the drive capacity,
(2) When the drivi is connected the same power distribution system as a thyristor
(3) When the divive is connected to the same power distribution system as that drives.

## When wiring the drive

## Wiring precautions

Installing a molded-case circuit breaker [MCCB]
[MCCB
input to protect the wiring. (2) Avoid turning the ELCB or MCCB on and off frequently to turn on/off the motor.
(3) To turn on/oft the motor frequently, ON/OFF the control terminals ( or P$)$-CC.

Installing a magnetic contactor [MC] [primary side]
(1) To prevent an automatic restar after the power interuption or overload relay has
triped, or actuation of the protective circuit, instal a magnetic contactor in the power supply.
(2) The drive is provided with fiul connected to the operation circuit of the magnetic contactor on the primary side, activated. (3) The drive can be used without a magnetic contactor. In this case, use an MCCB
(equipeed with a voltage tripping devic) for opening the primary circuit when the drive protective circuitis activated
(4) Avoid turning the magnetic contactor on and offf frequently to turn on/off the
motor.
(5) To turn on/off the motor frequently, ON/OFF the control terminals F (or R)-CC Installing a magnetic contactor [MC] [secondary side]
(1) As a rule, if a magnetic contactor is instaled between the drive and the motor, do not turn of ON/OFF whin
of ON/OFF while running, a large current may flow in the drive causing drive damage and failure.).
(2) A magnetic oontactor may be installed to change the motor or change to the
commercial powers supply wen the drive is stoponed. Always use an intertock commercial power supply when the drive is stopped. Always use an interlock
with the magnetic contactor in this situation so that the commercial power supply s not applied to the drive's output terminals
External signal
(1) of the reralay yald of the relay
(2) When wiring the control circuit, use shielded wires or twisted pair cables.
(3) Because all of the control terminals except FLA, FLB, , LLC, RAA, R1B, R2A a R2a

Installing an overload relay
(1) The drive has an electronic- -thermal overload protective function.

Haviusered or an overolload relay matching the motor's characateristics must b installed between the drive and the motor.
(a) When driving several motors simultaneneous applied motor capacity
(b) W)
(b) When diriving several motors simultaneously.
(2) When using the drive toontol the operation of constant-torque motor, change
the protective ocharacteristic of the electronic thermal relay acoording to the of constant toraue motor.
(3) In order to ondecuately protect a m motor used for low-speed operation, we
recommend the use of a motor equipped with a embedded thermal relay.

## When changing the motor speed

## Application to standard motors

Vibration
When a motor is operated with an industrial drive, it experiences more vibrations Han when it is operated by the commercial power supply. The vibration can be
reduced to a negigible level by securing the moto and machine to the base fiml. If the base is weak, however, the vibration may increase at alight load due to resonance with the mechanical system.
Reduction gear, belt, chain
Note that the lubrication capability of a reducer or a converter used as the interfac of the motor and the load machine may affectere at low speeds.
When operating at atreauncies over 60 tzt power transmision When operating at a frequencies over 60 Hz , power transmission mechanisms such
as reduction gear, betts and chains, may cause problems such as procuction of hoise, a reduction in trtength, or shortening of service life
Frequency
Before setting the maximum frequency to 60 Hz or more, confirm that this operating

## Application to special motors

## Braking motor

When using a braking motor, it the braking circuit is directly connected to the drive
outputt terminals, the brake cannot be released becaise f the voltage. Therefore, when using a braking motor, connect the braking circuit to the driv's power supply side, as shown on the below. Usually, braking motors produc
larger noise in low speed ranges.
$\underset{\substack{\text { Power } \\ \text { supply }}}{\ldots 11}$ MC1

(3) $\left.\begin{array}{l}\text { Non-mextation } \\ \text { action tye obate }\end{array}\right)$

Gear motor
When using an industrial drive to drive a gear motor, inquire of the motor manufacturer about its continuous operation range, since low-speed operation of a ron
Toshiba Premium Gold Motor (High-efficiency power-saving motor) Drive operation of Toshiba Premium Gold Motor is the best solution for saving noiselvibration reduuction characateristics when comporefed to standardard motors,

Pole-changing motor
Pole-changing motors can be driven by this drive. Before changing poles, howeve
be sure to let the motor come to a complete stop. Hight-pole-count motors
Note that hight-pole count motorss(8 or more poles), which may be used for fans,ett,
have higher rated current than 4 -pole moters tave higher rated current than 4 -pole moters. drive, you must pay special attention to to ts eltatively high. So, when selecting a the motor is below that of the drive.

Single-phase motor
Because single-phase motors are equipped

## For drive users

- Selecting peripheral and wiring sizes devices for HD rating

| ${ }_{\text {Voltage }}^{\text {class }}$ | $\underset{\substack{\text { Applicabobe } \\ \text { motor } \\ \text { awW }}}{ }$ | Dive <br> type-torm | $\left\lvert\, \begin{gathered} \text { Invut } \\ \text { curvent } \\ (A) \end{gathered}\right.$ | Molded-case circuit breaker <br> (MCCB) or Earth leakage <br> circuit breaker (ELCB) <br> Note 1),2) <br> Rated current <br> (A) |  | Wire size (mm) Note ef,7, ) |  |  |  |  | Drive Terminal Screw size |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | $\begin{aligned} & \text { circuit } \\ & \hline \text { Output terminal } \\ & (\mathrm{U}, \mathrm{~V}, \mathrm{~W}) \end{aligned}$ | DC terminal | Braking resistor/ <br> Braking unit <br> (optional) Note 8) | $\begin{gathered} \text { Grounding } \\ \text { wire } \end{gathered}$ | Power terminal |  |
| 240 V | 0.4 | VFAS3-2004P | 1.7 | 3 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 | m4 | м5 |
|  | 0.75 | VFASS-2007P | 3.3 | 5 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 1.5 | VFASS-2015P | 6.0 | 10 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 2.2 | VFASS-2022P | 9.0 | 15 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 4.0 | VFASS-2037P | 15.1 | 20 | 20 | 2.5 | 4 | 2.5 | 1.5 | 4 | M4 | M5 |
|  | 5.5 | VFASS-2055P | 20.1 | 30 | 32 | 4 | 6 | 4 | 1.5 | 6 | M5 | м5 |
|  | 7.5 | VFAS3-2075P | 27.3 | 40 | 32 | 6 | 10 | 6 | 2.5 | 10 |  |  |
|  | 11 | VFAS3-2110P | 40.0 | 50 | 50 | 10 | 16 | 10 | 4 | 16 | m8 | M6M8 |
|  | 15 | VFASS-2150P | 53.2 | 75 | 60 | 16 | 25 | 16 | 6 | 16 |  |  |
|  | 18.5 | VFAS3-2185P | 64.8 | 100 | 80 | 25 | 35 | 25 | 10 | 16 | M12 |  |
|  | 22 | VFAS3-2220P | 78.3 | 100 | 80 | 35 | 50 | 35 | 16 | 25 |  | ${ }_{\text {M }}^{\text {M }}$ |
|  | 30 | VFASS-2300P | 104.7 | 150 | 150 | 50 | 70 | 50 | 25 | 35 |  |  |
|  | 37 | VFASS-2370P | 128.4 | 175 | 200 | 70 | 95 | 70 | 35 | 50 |  |  |
|  | 45 | VFASS3-2450P | 157.6 | 200 | 260 | 95 | 120 | 95 | 50 | 70 | M10 | M10 |
|  | 55 | VFAS3-2550P | 189.0 | 250 | 260 | 120 | 70x2 | 120 | 50 | 95 |  |  |
| 480 V | 0.4 | VFAS3-4004PC | 0.9 | 3 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 | M4 | м5 |
|  | 0.75 | VFASS-4007PC | 1.8 | 3 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 1.5 | VFASS-4015PC | 3.2 | 5 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 2.2 | VFAS3-4022PC | 4.9 | 10 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 4.0 | VFAS3-4037PC | 8.3 | 10 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 5.5 | VFASS3-4055PC | 10.9 | 15 | 20 | 1.5 | 2.5 | 2.5 | 1.5 | 2.5 | M4 | м5 |
|  | 7.5 | VFASS3-4075PC | 14.7 | 20 | 20 | 2.5 | 4 | 2.5 | 1.5 | 2.5 |  |  |
|  | 11 | VFASS-4110PC | 21.4 | 30 | 32 | 4 | 6 | 4 | 1.5 | 4 | M5 | м5 |
|  | 15 | VFASS3-4150PC | 28.9 | 40 | 32 | 6 | 10 | 6 | 2.5 | 10 |  |  |
|  | 18.5 | VFAS3-4185PC | 35.4 | 50 | 50 | 10 | 10 | 10 | 2.5 | 10 |  |  |
|  | 22 | VFAS3-4220PC | 42.1 | 60 | 50 | 16 | 16 | 10 | 4 | 16 | м8 | M6 ${ }_{\text {M8 }}$ |
|  | 30 | VFAS3-4300PC | 57.1 | 75 | 60 | 25 | 25 | 16 | 10 | 16 |  |  |
|  | 37 | VFASS3-4370PC | 69.9 | 100 | 80 | 25 | 35 | 25 | 10 | 16 |  |  |
|  | 45 | VFAS3-4450PC | 84.8 | 125 | 100 | 35 | 35 | 35 | 16 | 16 | M12 | M12 ${ }_{\text {M }}$ |
|  | 55 | VFAS3-4550PC | 103.3 | 125 | ${ }^{135}$ | 50 | 50 | 50 | 16 | 25 |  |  |
|  | 75 | VFAS3-4750PC | 139.8 | 175 | 200 | 95 | 95 | 70 | 35 | 50 |  |  |
|  | 90 | VFAS3-4900PC | 170.2 | 225 | 260 | 120 | 120 | 95 | 35 | 70 | M10 | M8M10 |
|  | 110 | VFASS-4110KPC | 203.5 | 250 | 260 | 70x2 | 70x2 | 70×2 | 50 | 95 |  |  |
|  | 132 | VFASS-4132KPC | ${ }^{240.3}$ | 300 | 260 | $70 \times 2$ | 70x2 | $70 \times 2$ | 70 | 95 |  |  |
|  | 160 200 | VFASS3-4160KPC | 290.0 | 350 | 350 450 | $120 \times 2$ $150 \times 2$ | $95 \times 2$ $120 \times 2$ 10 | $150 \times 2$ $150 \times 3$ | 95 150 | 120 <br> 150 | M10/M12 | M12 |
|  | 220 | VFASS-4220KPC | ${ }^{395.0}$ | 500 | 450 | ${ }_{150 \times 3}$ | ${ }_{120 \times 2}$ | 150x3 | 150 | 150 |  |  |
|  | 280 | VFASS-4280KPC | 495.0 | 700 | 660 | 150x 3 | 185x2 | 150x4 | 150 | 120×2 |  |  |

Note 1) Selections tor use of the Toshiba 4 -pole standard motor with power supply voltage of $200 \mathrm{~V} / 400 \mathrm{~V}-5 \mathrm{H} \mathrm{Hz}$.
Note 2)


Note 5) In the case the magnetic contactor (MC) with 2a-type auxiliary contacts is sused for the control circuit, raise the reliabiily of the contact by using 2a-type contacts in
Note 6) $\begin{aligned} & \text { paralale connenection. } \\ & \text { The rectire size is is that of the wire ( e.g. } 600 \mathrm{~V} \text { class, } \mathrm{HIV} \text { cable) with continuous maximum permissible temperature of } 75^{\circ} \mathrm{C} \text {. Ambient temperature is } 50^{\circ} \mathrm{C} \text { or } \\ & \text { lestance is } 30 \mathrm{~m} \text { or lesss. }\end{aligned}$ The wire size comply with IECC63364-5-52 (Grounding wire: IEC60364-5-54)
It doos not comply with ULStandard
Note 7) For the control circuitit use shielded wires whose size (cross-section) is $0.75 \mathrm{~mm}^{2}$ or more.
Note 8) Choose the wiring size according to the braking resistor value.
Note 9) Use Crimp-style terminals for VFAS3-2450P,2550, 4900PC to 4280 KPC

- Selecting peripheral and wiring sizes devices for ND rating

| Voltage class | $\begin{gathered} \text { Applicable } \\ \text { motor } \\ (\mathrm{kW}) \end{gathered}$ | Drivetype-form | $\begin{gathered} \text { Input } \\ \text { current } \\ (A)^{\prime} \end{gathered}$ | Molded-case circuit breaker <br> (MCCB) or Earth leakage <br> circuit breaker (ELCB) <br> Note 1),2) <br> Rated current <br> (A) |  | Wire size (mm²) Note ef, $7, .9$ ) |  |  |  |  | Drive Terminal Screw size |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Power circuit |  | $\stackrel{\mathrm{DC}}{\text { teminal }}$ | Braking resistor/ Braking unit (optionall Note 8 <br> optional) Note 8 | $\begin{gathered} \text { Crounding } \\ \text { wire } \end{gathered}$ | Power termina | Crounding |
|  |  |  |  |  |  | Input teminal | (tiout emme |  |  |  |  |  |
| 240 V | 0.75 | VFAS3-2004P | 3.0 | 5 | 20 | 1.5 | 1.5 | 2.5 |  | 2.5 | M4 | м5 |
|  |  | VFAS3-2007P | 5.9 |  | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 2.2 | VFAS3-2015P | 8.5 | 15 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 4.0 | VFAS3-2022P | 15.1 | 20 | 20 | 2.5 | 4 | 2.5 | 1.5 | 4 |  |  |
|  | 5.5 | VFAS3-2037P | 20.2 | 30 | 32 | 4 | 6 | 4 | 1.5 | 6 | м5 | M5 |
|  | 7.5 | VFASS-2055P | 27.1 | 40 | 32 | 6 | 10 | 6 | 2.5 | 10 |  |  |
|  | 11 | VFASS-2075P | 39.3 | 50 | 50 | 10 | 16 | 10 | 4 | 16 |  |  |
|  | 15 | VFAS3-210P | 53.0 | 75 | 60 | 16 | ${ }^{25}$ | 16 | 6 | 16 | M8 | ${ }_{\text {M }}^{\text {M }}$ |
|  | 18.5 | VFASS-2150P | 65.1 | 100 | 80 | ${ }^{25}$ | ${ }^{35}$ | ${ }^{25}$ | 10 | ${ }_{16}^{16}$ |  |  |
|  | 22 | VFAS3-2185P | 76.0 | 100 | 80 | 35 | 50 | 35 | 16 | 25 |  |  |
|  | 30 | VFAS3-2220P | 104.7 | 150 | 150 | 50 | 70 | 50 | 25 | ${ }^{35}$ | M12 | M ${ }_{\text {M }}^{\text {M }}$ |
|  | 37 | VFASS-2300P | 128.0 | 175 | 200 | 70 | ${ }^{95}$ | 70 | ${ }^{35}$ | 50 |  |  |
|  | 45 | VFASS-2370P | 154.7 | 200 | 260 | 95 | 120 | 95 | 50 | 70 |  |  |
|  | 55 | VFAS3-2450P | 191.9 | 250 | 260 | 70x2 | 70x2 | 50x2 | 50 | 95 | M10 | M10 ${ }_{\text {M8 }}^{\text {M }}$ |
|  | 75 | VFAS3-250P | 256.0 | 350 | 350 | 95x2 | 95x2 | 70×2 | 70 | 120 |  |  |
| 480 V | 0.75 | VFAS3-4004PC | 1.6 | 3 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 | M4 | м5 |
|  | 1.5 | VFAS3-4007PC | 3.1 | 5 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 2.2 | VFAS3-4015PC | 4.5 | 10 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 4.0 | VFAS3-4022PC | 8.0 | 10 | 20 | 1.5 | 1.5 | 2.5 | 1.5 | 2.5 |  |  |
|  | 5.5 | VFAS3-4037PC | 10.8 | 15 | 20 | 1.5 | 2.5 | 2.5 | 1.5 | 2.5 | M4 | м5 |
|  | 7.5 | VFAS3-4055PC | 14.4 | 20 | 20 | 2.5 | 4 | 2.5 | 1.5 | 2.5 |  |  |
|  | 11 | VFASS 3 -075PC | 20.8 | 30 | 32 | 4 | 6 | 4 | 1.5 | 4 |  |  |
|  | 15 | VFASS-4110PC | 28.3 | 40 | 32 | 6 | 10 | 6 | 2.5 | 10 | м5 | м5 |
|  | 18.5 | VFAS3-4150PC | 34.9 | 50 | 50 | 10 | 10 | 10 | 2.5 | 10 |  |  |
|  | 22 | VFAS3-4185PC | 41.4 | 50 | 50 | 10 | 16 | 10 | 4 | 16 |  |  |
|  | 30 | VFAS3-4220PC | 55.9 | 75 | 60 | 16 | 25 | 16 | 6 | 16 | м8 | M6M8 |
|  | 37 | VFASS-4300PC | 69.0 | 100 | 80 | 25 | 35 | 25 | 10 | 16 |  |  |
|  | 45 | VFAS3-4370PC | 83.4 | 125 | 100 | 35 | ${ }^{35}$ | ${ }^{35}$ | 16 | 16 |  |  |
|  | 55 | VFASS-4450PC | 101.9 | 125 | 135 | 50 | 50 | 50 | 16 | 25 | ${ }^{\text {M12 }}$ | ${ }_{\text {M12 }}^{\text {M }}$ |
|  | 75 | VFASS-4550PC | 138.0 | 175 | 200 | 70 | 95 | 70 | 35 | 50 |  |  |
|  | 90 110 | VFAS3-4750PC | ${ }_{265.1}^{160.5}$ | 200 200 | 260 | 95 | ${ }^{120}$ | ${ }^{95}$ | 35 35 | 70 |  |  |
|  | 110 | VFASS3-4900PC | ${ }^{203.5}$ | 250 | 260 | ${ }_{\text {50x }}$ | 50x2 | $70 \times 2$ | ${ }^{35}$ | 95 | M10 | M8M10 |
|  | 132 | VFAS3-4110KPC | 240.3 | 300 | 260 | 70x2 | 70x2 | 70x2 | 50 | ${ }^{95}$ |  |  |
|  | 160 | VFAS3-4132KPC | 284.2 | 350 | 350 | 95x2 | 95x2 | 95x2 | 70 |  |  |  |
|  | 220 | VFASS3-4160KPC | ${ }^{395.0}$ | 500 | 450 | $150 \times 2$ $150 \times 2$ | $\begin{array}{r}150 \times 2 \\ \hline 150 \times 2\end{array}$ | ${ }^{150 \times 2}$ | 95 | 150 | M12 | M12 |
|  | 250 | VFAS3-4200KPC |  | 500 | 450 | ${ }^{150 \times 2}$ | ${ }^{150 \times 2}$ | ${ }^{185 \times 2}$ | 150 | 150 |  | M12 |
|  | 280 | VFAS3-4220KPC | 495.0 | 700 | 660 | 150×3 | ${ }^{120 \times 3}$ | 150x3 | ${ }^{150}$ | ${ }^{120 \times 2}$ |  |  |
|  | 315 | VFAS3-4280KPC | 555.0 | 1000 | 660 | 150x3 | 150x3 | 150x3 | 150 | 120x2 |  |  |


Note e () Attach surge absorber to the magnetic contactor and exciting coil of the rela
Note
Note 5 )
Note 5) In the case the magnetic contactor (MC) with 2a-type auxiliary contacts is used for the control circuit, raise the reliability of the contact by using 2 a-type contacts in


Note 8) Choose the wiring size according to the braking resistor value.
Note 9) Use Crimp-style terminals for VFAS3-2450P, 2500 , 4900 P to
4280

## Selecting the Capacity (model) of the Drive

## selection


 Acceleration/deceleration times
The actual accelearaion nand docalearation tin




Illowable torque characteristics

 teuuency

Starting characterisicics
 though the starting oraue is smaler with a a dive than with the commerial power supply, a high


## Peripheral devices



## Harmonic current and influence to power supply

Harmonics are defined as sinusoidal waves that is muttiple frequency of commercial power supply (base frequency: 50 Hz or 6 Hz ). Commercial ower supply including harmonics has a distorted waveform.
rectifying and smoothing circuits on the input side. Harmonics in theduce a device influence other electrical equipment and facilities in some cases (for example, overheating of phase advancing capacitors and reactors).

## Insert type options

This drive is equipped with two optin slots (A, B) as standard. The option adaptor (option) can be mounted. Table of optional devices

| Name | Specification | Type-form | Slot avaiability |
| :---: | :---: | :---: | :---: |
| I/O extension 1 | $6 x$ digital input 2x digital output 2x analog input | ETB013Z | A, B, C |
| 1/0 extension 2 | 3 x a relay | ETB0142 | A, B, C |
| Digital encoder | RS422 Line receiver | VEC008z | B |
| Resolver | Resolver | VEC010z | B |
| Safety option | SS1, SS2, sos, SBC, SLS, SDI | SFToo1z | c |
| PROFINET | PROFINET interface | PNE001Z | A |
| EtherCAT | EtherCAT interface | IPE003z | A |
| PROFIBUS-DP | PROFIBUS-DP interface | PDP003Z | A |
| DeviceNet | DeviceNet interface | DEV003z | A |
| CANopen | CANopen interface:$:$ RJ45 <br>  D-sub <br>  $:$ Open style | CAN001Z CANoo2Z CANOO3Z | A |

## Function of I/O extension

| Type-form | ETB013z | EтB014z |
| :---: | :---: | :---: |
| Mulifunction programmable contact input | Multifunction programmable contact input : 6 points Logic type selected by DICC wiring. <br> Sink logic:ON $<10 \mathrm{~V}, 16 \mathrm{~V}<\mathrm{OFF}$ <br> Source logic:OFF<5V, 11V<ON | Disable |
| Multifunction programmable open collector output | Multifunction programmable open collector output : 2 points <br> Logic Type selected by DQCC wiring <br> Max. switching voltage $<=30 \mathrm{~V}$ <br> Max. switching current $<=100 \mathrm{~mA}$ <br> Voltage drop at 100 mA load $<=3 \mathrm{~V}$ | Disable |
| Multifunction programmable relay contact output | Disable | Multifunction programmable <br> relay contact output: 3 relay(1a) <br> $250 \mathrm{Vac}-2 \mathrm{~A}(\cos \phi=1), 30 \mathrm{Vdc}-2 \mathrm{~A}$ (at resistive load) <br> $250 \mathrm{Vac}-1 \mathrm{~A}(\cos \phi=0.4), 30 \mathrm{Vdc}-1 \mathrm{~A}(\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$ |
| Analog input | Differential analog input: 2 points Voltage input: -10 Vdc to +10 Vdc Impedance: 20kohm Current input: 0 to 20 mA Impedance: 250ohm | Disable |

## Function sensor feedback

| Type-form | VECo08z | VECO10Z <br> Sensor type |
| :--- | :--- | :--- |
| Incremental rotary encoder | Resolver |  |

How to install

## 

## External options for HD rating

| dasse | Applate | Dinve tye-form | mput AC reactor (ACL) |  | ng unit | Braking resistor | Stiond | Flagse mounting kit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.4 | VFAS3-2004P | Pf-2005s | Butitin | Builin | P8B-2007 |  | Foororz |
|  | 0.75 | VFASS3-2007P | Pr-2005s |  |  | PBR-207 |  | F000182 |
|  | $\stackrel{1.5}{22}$ | VFAS3.20.5P | ${ }_{\text {PFL-200115 }}^{\text {PF-2015 }}$ |  |  | ${ }_{\text {PBPR-2022 }}$ |  | ${ }_{\text {Ferorinz }}$ |
|  | ${ }_{4}^{2.0}$ | VFASS32037 | PFL-2018s |  |  | ${ }_{\text {P8BR-2037 }}$ |  | ${ }_{\text {Foroter }}$ |
|  | 5.5 | VFASS3-2055P | PFL-2025s |  |  | PB87-0044V015 |  | Foroozz |
|  | ${ }^{7.5}$ | Vefes3.2075 | $\xrightarrow{\text { PfF-2050s }}$ |  |  | P887-0atwol1 |  | Foroozz |
| 240 V | 15 | VFASS32150P | ${ }_{\text {Pff-2020) }}^{\text {Pe-20s }}$ |  |  |  |  |  |
|  | 18.5 | VFAAS-2185P | PPL-2100s |  |  | P8B7T-088V7R5 |  | Foroerz |
|  | ${ }_{30}^{22}$ |  | ${ }_{\text {Pre-2100s }}^{\text {PFL-215s }}$ |  |  |  |  |  |
|  | ${ }_{37}$ | VFASS32370P | ${ }_{\text {PfL-2150s }}^{\text {Pros }}$ |  |  | ${ }_{\text {Pbri-OTTM3R7 }}$ |  |  |
|  | ${ }^{45}$ | VFAAS32450P | PfL-2200s |  | P877-432K | P8B77.035W1R8 |  | Foroozz |
|  | 55 | VFAAS-2550P | Pf-2300s |  | P87-4132K | P8877.035W1R8 |  | Foroezz |
| 480 V | 0.4 | VAAS3-4004PC | PfL-4012S | Bult-in | Builtin | PBA-2007 | MsF-4015z | Foroirz |
|  | 0.75 | VFASS3-4007PC | PfL-4012s |  |  | P8R-2007 | MsF-4015z | Foroisz |
|  | 1.5 | VFASS3-4015PC | ${ }_{\text {Pf-4012S }}^{\text {PFL-012S }}$ |  |  | P8BR-2007 | MsF-4015 | Foto18z |
|  | 2.2 | VFAS3 -4022PC | PfL-4012S |  |  | P8B-2007 | MsF-40372 | Foroisz |
|  | 4.0 | VFAS3-4037PC | PeL-4022s |  |  | P8R-4037 | MsF-40372 | Foroisz |
|  | 5.5 | VFASS3-405SPC | PfL-4025s |  |  | P8877-0a4wos0 | MsF-40752 | Foto192 |
|  | ${ }_{7}^{7.5}$ | Vefas-4075CC | Pf-4025s PFL-4025s |  |  |  | ${ }_{\text {MS }}^{\text {MS-407452 }}$ | $\underset{\text { Fororo2z }}{\substack{\text { Forioz }}}$ |
|  | 15 | VFAS3-41509C | Pf-4065s |  |  | P887-088030 | MSF-41502 | Forozoz |
|  | 18.5 | VFASS3-4185PC | PfL-4050s |  |  | Pa87-08w030 | MSF-4220z | Foroo2z |
|  | ${ }_{30}^{22}$ |  | ${ }_{\text {Pre-4050s }}^{\text {PFL-400 }}$ |  |  |  | MSF-2202 | ${ }_{\substack{\text { Feoroviz } \\ \text { Foroviz }}}$ |
|  | ${ }_{37}$ | VFASS3-4737POC | PFL-4100s |  |  | P887-017w010 | MSE-43702 | Foroorz |
|  | ${ }^{45}$ | VAAS3-4450PC | PfL-4100s |  |  | P887-017W7R5 | MSF-4550Z | Foroozz |
|  | ${ }_{55}^{55}$ | Veas3-4590¢C |  |  |  |  | MsF-4502z |  |
|  | 75 90 | Veass-7500C |  |  |  |  | Refer to P. 27 for selection of Motor-end surge voltagesuppression filter. |  |
|  | ${ }_{110}^{10}$ | VFASS3-4110 KPC | PfLL-1-260 |  | P877-4132K | DGPboow-bz2MC2M |  | Fotorazz |
|  | ${ }_{\substack{132 \\ 180}}$ |  | $\xrightarrow{\text { PFLL1-4350 }}$ PLT-350 |  | P87-4132K | DGPboow-b2MCC2M |  | ${ }^{\text {Foroozz }}$ |
|  | ${ }^{160}$ |  | ${ }_{\text {PFLL-1-4455 }}^{\text {Prem }}$ | Atacted as | ${ }_{\text {PB7-4200K }}^{\text {Putili }}$ | Dappown-82MC2M |  |  |
|  | 220 | VFAS3-4220kPC | PFL1-4455 |  | P877-2000 | odproow-bзMC3M |  | Fototazforot 52 |
|  |  | VFAS3-4280kPC | PFL1-4800 |  | P8774200k | DGProow-84MC4M |  | Forotazforot |

External options for ND rating

| Votage |  | Dinve type-orm | mput A reator (ACL) | DCL) | Braking mit | Braking resistor | Motorend sisge volige | Flange mounting kit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0.75 | VFAAS3-2004P | PfL-2005s |  |  | P8B-2007 |  | Foroisz |
|  | 1.5 | VFAAS-207P |  |  |  | PBR-2022 |  | Foroirz |
|  | 2.2 | VFASS-2015P | PfL-2011S |  |  | P8R-2022 |  | Foroisz |
|  | 4.0 5.5 |  | ${ }_{\text {Pre-20188 }}^{\text {PFL-2025s }}$ |  |  | P8P-2037 |  | ${ }^{\text {Foroor }} 8$ |
|  | ${ }_{7} 7.5$ | VFASS32055P | PFLL2020s |  |  | PBER7-004W015 |  | Foroorz |
|  | 11 | VFAS3-2075P | Pf-2050s |  | Buitin | Pb8r-oosw |  | Foroorz |
| 240 V | 15 | vas |  | But-in |  | 008W7 |  |  |
|  | 18.5 | VAAS3-2/1 |  |  |  |  |  |  |
|  | ${ }_{30}^{22}$ | Vats-20bP | ${ }_{\text {Pre-2100s }}^{\text {PFL-250s }}$ |  |  | Pb87-089 ${ }^{\text {Pab }}$ |  |  |
|  | ${ }_{37}$ | Veass-2300P |  |  |  |  |  | + |
|  | ${ }_{45}$ | VFASS32370P | Pf-2-200s |  |  | P887-035W1R8 |  | Foroz2z |
|  | ${ }_{5}$ | VFAAS-2450P | PFL-2300s |  | P87-4132K | P8877-035W1R8 |  | Foroozz |
|  | 75 | VFASS-2550p | PFL1-2350 |  | P8774132K | DGP6oow-BiMCIM |  | Foroozz |
|  | 0.75 | VFASS-4000PC | PfL-4012S |  |  | P8R-207 | MSF-40152 | Foroisz |
|  | 1.5 | VFASS-4007PC | PfL-4012S |  |  | P8BR-207 | MSF-4015z | Foroisz |
|  | 2.2 | VFAAS-40195PC | PFL-40123 |  |  | P8BR-2007 | MS5-40372 | Foror 82 |
|  | 4.0 | VFASS3-4022PC | Pfl-4012S |  |  |  | MS5-40372 | Foroter |
|  | ${ }_{5}^{5.5}$ | VFASS3-4037PC | PFL-4025 |  |  | P887-004W060 | MSF-40752 | Forotez |
|  | 7.5 | VFASS3-4055sp | PFL-4025S |  |  | P8877-04W060 | MSF-40752 |  |
|  | 11 | VFASS3-4075PC | PFL-4025s |  |  | P8877-088V030 | MSF-41502 | Foroter |
|  |  | Nassume |  |  | Bultin | , |  |  |
|  |  |  |  |  |  |  |  |  |
|  | ${ }^{22}$ | NASSS | Pra-4009 | Bultin |  | Pbin-0080sos | WSt-2302 | ${ }_{\text {Foreor }}$ |
|  | ${ }^{3}$ | Fats | Pre-4009 |  |  | Pbin-otwols | Mop-asioz | Foronz |
| 4ov | ${ }_{45}$ | VFASS33-437POC | ${ }_{\text {PfL-40400s }}$ |  |  | ${ }_{\text {Pberaz-017wole }}$ | MSS-45502 | ${ }_{\text {Fororoviz }}$ |
|  | 55 | VFAS3-4450PC | PPL-4150s |  |  | P887-017W7R5 | MS-4550z | Foroz2z |
|  | ${ }^{75}$ | VFASS3.45500 | ${ }_{\text {PFP-4150s }}^{\text {PL1-1280 }}$ |  |  | P887-077 W3\%7 | MS5-47502 | Foroozz |
|  | 90 110 | ${ }_{\text {VeAs3 }}$ | $\underset{\substack{\text { Pritu-260 } \\ \text { PFLT-4200 }}}{ }$ |  | PB7-432K | Doppoow-B2MCC2M |  | ${ }_{\text {Ferorozz }}^{\substack{\text { Forozaz }}}$ |
|  | 132 | VFASS 4110 KPRC | PFL1-4350 |  | P8874132K | DGPboow-bzMC2M |  | Fотo23z |
|  | 160 | VFAS33-4132KPC | PFL1-4350 |  | P8774132K | DGPboow-b2MCz2M | Reter toper for selection | Foroozz |
|  | ${ }^{220}$ | VFASS-41600kPC | PFL1-4455 |  | Builtin | DGP860N-83WC | suppesision fiter | Foroilz |
|  | 280 | VFASS-4220kPC | PFL1-4800 | standard | ${ }_{\text {PB7-4200K }}$ |  |  | FotoitzFForoisz |
|  | 315 | VFASS3-4280KPC | PFL1-4800 |  | P87-4200K | DGPboow-b4MC4M |  | Fotolazforot 12 |

Input AC reactor

## External dimensions <br> Connection diagram



Fig.c


Fig. $B$


Fig.D




In case of using control power supply


| del | ating | Drive type-fo | Dimensions(mm) |  |  |  |  |  |  | Extemal | min | $\begin{gathered} \text { Approx. } \\ \substack{\text { Apass } \\ \text { maso } \\ \text { ken }} \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | w | H | D | н2 | A | E | F | m |  |  |
| PFL-2005S | \$-230V-5.5A-50/60Hz | VFAS3-2004P(HD), 2007P(HD) VFAS3-2004P(ND) | 105 | 115 | 72.5 | - | 90 | 55 | 5 | A | Terminal lock M3.5 | 1.2 |
| PFL-2011S | 3¢-230V-11A-50/60Hz | VFAS3-2015(HD), 2022P(HD) | 130 | 140 | 85 | - | 115 | 60 | 5 |  | Terminal lock M4 | 2.3 |
| PFL-2018S | $3{ }^{\text {S-230V-18A-50/60Hz }}$ | VFAS3-2037P(HD), VFASS3-2022P(ND) | 130 | 140 | 85 | - | 115 | 60 | 5 |  |  | 2.5 |
| PFL-2025S | $3 ¢-230 \mathrm{~V}-25 A-50 / 60 \mathrm{~Hz}$ | VFAS3-2055P(HD), VEAS3-2037P(ND) | 125 | 130 | 100 | - | 50 | 83 | 7 | в |  | 2.6 |
| PFL-2050S | 3¢-230V-50A-50/60Hz | VFAS3-2075P(HD), 2110P(HD) VFASB-2055P(ND), 2075P(ND) | 155 | 140 | 115 | - | 50 | 95 | 7 |  | minal block M | 3.4 |
| PFL-2100s | 3¢-230V-100A-50/60Hz | VFAS3-2150P(HD), 2185P(HD), 2220P(HD) VFAS3-2110P(ND), 2150P(ND), 2185P(ND) | 230 | 210 | 150 | - | 60 | 90 | 8 |  | Jermina block M8 | 8.2 |
| PFL | V-150A-50/60 | VFAS3-2300P(HD). 2370P(HD) VFAS3-2220P(ND). 2300P(ND) | 175 | 290 | 160 | 220 | 60 | 10 | 8 | ${ }^{\circ}$ | 00-10 | 11.3 |
| PFL-2200s |  | VFAS3-2450P(H), VFAS3-2370P | 195 | 320 | 170 | 240 | 65 | 115 | 10 |  | Ring termina 80-10 | 15.1 |
| PLL-2300s | ${ }^{3 \phi-230 V-300 A-50 / 60 H z}$ | VFAAS3-2550P(H) , VFAS33-2450P(N) | 235 | 370 | 200 | 280 | 75 | 128 | 10 |  | Ring terminal 150-10 | 23.1 |
| PFL-2350 | 3¢-230V-350A-50/60Hz | VFAS3-2550P(ND) | 260 | 330 | 165 | 255 | 85 | 121 | - | в | Terminal lock M4 | 19 |
| PFL-4012S | $3{ }^{\text {d-4 -40V-12.5A-50/60Hz }}$ | VFAS3-4004P(HD) ~ VFAS3-4037PC(HD) VFAS3-4004PC(ND) ~VFAS3-4022PC(ND) | 125 | 130 | 95 | - | 50 | 79 | 7 |  |  | 2.3 |
| PFL-4025 | ${ }^{3 \phi-460 V-25 A-50 / 60 H z}$ | VFAS3-4055PC(HD) ~ VFAS3-4110PC(HD) VFAS3-4037PC(ND) ~VFAS3-4075PC(ND) | 155 | 155 | 110 | - | 50 | 94 | 7 |  |  | 4.9 |
| PFL-4050S | 3 3-460V-50A-50/60Hz | VFAS3-4150PC(HD) ~ VFAS3-4220PC(HD) <br> VFAS3-4110PC(ND) ~VFAS3-4185PC(ND) | 155 | 165 | 140 | - | 50 | 112 | 7 |  | Terminal llock M6 | ${ }^{6.6}$ |
| PFL-4100S | -50-100A-50/60Hz | VFAS3-4300P(HD) $\sim$ VFASS3-450PC(HD) VFAS3-4220PC(ND) $\sim$ VFAS3-4370PC (ND) | 235 | 250 | 170 | - | 75 | 105 | 10 |  | Terminal block M8 | 17.6 |
| PFL-4150S | 38-460V-150A-50/60Hz | VFAS3-4550PC(HD) $)$ 4750PC(HD) VFAS3-4450PC(ND). 4550PC(ND) | 235 | 360 | 190 | 280 | 75 | 115 | 10 | c | Ring terminal $80-10$ | 20.3 |
| PFL1-4260 | 600-260A-50/60Hz | VFAS3-4900PC(HD), $4110 \mathrm{KPC}(\mathrm{HD})$ VFAS3-4750PC(ND), 4900PC(ND) | 260 | 380 | 170 | 295 | 85 | 126 | - | D | fing terminal 80-12 | 22 |
| PFL--4350 | 3¢-460V-350A-50/60Hz | VFAS3-4132KPC(HD), 4160KPC(HD) VFAS3-4110KPC(ND), 4132KPC(ND) | 260 | 380 | 185 | 295 | 85 | 141 | - |  | Ring terminal 100-12 | 28 |
| L1-4455 | 3d-460-455A-50/60Hz | VFAS3-4200KPC(HD). 4220KPC(HD) VFAS3-4160KPC(ND) | 360 | 470 | 165 | 370 | 125 | 121 | - |  | Ring terminal 150 | 37 |
| PFL-4800 | $3{ }^{\text {3 - } 460 \mathrm{~V}-800-50 / 60 H z}$ | $\begin{aligned} & \text { VFASS-2880KPCC(H) } \\ & \text { VFASS } 3-4200 \mathrm{PPC(ND)} \sim \text { VFASS-4280KPCI } \end{aligned}$ | 360 | 400 | 220 | - | 125 | 136 | - | E | ${ }^{18}$ | 62 |

Motor end surge voltage suppression filter (Only 480V class)

## External dimensions



## Connection diagram



## Countermeasure of motor end surge voltage

 At the system of operation of the $480 V$ class motor by the voltage type PWM drive with using superhigh-speed switching devicee(ex.IGBT). the degradation of insulation of motor wiring may be occurred high-speed switching device(ex.|GBT). the degradation of insulation of motor wiring may be occurred in this case, the following countermeasures are suggested. In this case, the following countermeasures are

1) Use of the enhanced insulation type of motor
2) Suppress the surge voltage by AC reactors in
3) Suppress the surge voltage by AC reactors in the load side or surge suppression filter. Note 11) To be installed floor horizontal mounting.
Note 2) To be used that carrier freauency is 15 KHHz l less, and output frequency is 60 Hz or less.

| Model | Drive type-form | Dimensions (mm) |  |  |  |  |  |  | External dimension diagram | Temminal screw | Approx. mass (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | в | c | D | E | F | a |  |  |  |
| MSF-4015z | VFAS3-4004PC(HD) to VFAS3-4015PC(HD) VFAS3-4004PC(ND), 4007PC(ND | 310 | 255 | 300 | 200 | 270 | 55 | 189 | A | M4 | 12 |
| MSF-40372 | VFAS3-4022PC(HD), 4037PC(HD) VFAS3-4015PC(ND), 402PPC(ND) | ${ }^{310}$ | 255 | 300 | 200 | 270 | 55 | 209 |  | M4 | 20 |
| MSF-4075z | VFAS5-4055PC(HD), 4075PC(HD) VFAS5-4055PC(HD), 4075PC(HD) | 310 | 315 | ${ }^{350}$ | 200 | 320 | 55 | 249 |  | M5 | 30 |
| MSF-41502 | VFAS3-4110PC(HD), 4150PC(HD) VFAS3-4075PC(ND), 4110PC(ND) | 330 | 355 | 400 | 200 | 370 | 65 | 289 |  | M6 | 40 |
| MSF-4220z | VFAS3-4185P(HD), 4200PC(HD) <br> VFAS3-4150PC(ND), 4185PC(ND | 330 | 405 | 400 | 200 | 370 | ${ }^{65}$ | 279 |  | M6 | 52 |
| MSF-4370z | VFAS3-4300PC(HD), 4370PC(HD) VFAS3-4220PC(ND), 4300PC(ND) | 426 | 372 | ${ }^{512}$ | 260 | 490 | 83 | 349.5 | в | M8 | 75 |
| MSF-4550z | VFAS3-4450P(HD), 4550PC(HD) VFAS3-4370PC(ND), 4450PC(ND) | 450 | 395 | 32 | 260 | 610 | 95 | 372.5 | c | M10 | 110 |
| MSF-47502 | VFAS33-4750P(HD) | 450 | 415 | 700 | 260 | ${ }^{678}$ | 95 | 392.5 |  | M10 | 120 |

External dimensions


Note 1) Approximately $10 \%$ of voltage drop is generated by the filter dep.
Motors should be selected with htis voltage e ropo in oonsidideration.
Note 2 ) Select the drive evithted the capacity that is larger than the motor, due to the carier frequency limitation of the filter and the curf



| $\begin{aligned} & \text { Applicable } \\ & \text { Motor (kWW Weas) } \end{aligned}$ | Drive type-form Nean9 |  | Model ${ }^{\text {Poeas }}$ | Dimensions (mm) |  |  |  |  |  |  |  |  |  |  |  |  | Approx.mass$(\mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | HD rating | ND rating |  | a | b | c | c1 | a | H | m | d | - | f | J | K | L |  |
| 90 | VFAS3-4110KPC | VFAS3-4900PC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 110 | VFAS3-4132KPC | VFAS3-4110KPC | FN5040-410-99 | 490 | 600 | 240 | 355 | 430 | 194 | 10.6x18.6 | 170 | 240 | 328 | 150 | 300 | 150 | 177 |
| 132 | VFASS-4160KPC | VFASS3-4132KPC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 160 200 | VFAS3-4200KPC | VFAS3-4160KPC | FN5040-480-99 | 510 | 618 | 270 | 410 | 430 | 195 | $13 \times 27$ | 270 | 220 | 328 | 150 | 300 | 250 | 220 |
| 220 | VFAS3-4280KPC | VFAS3-4200kPC |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 250 |  | ${ }_{\text {V }}^{\text {VFAS3-42OKPC }}$ | FN5040-750-99 | 660 | 670 | 290 | 468 | 570 | 220 | $13 \times 26$ | 375 | 200 | 555 | 255 | 510 | 350 | 455 |

## Braking resistor

■ Braking resistor (PBR)



Fig.E


■ Braking resistor (DGP600)


Note 1) In case of 480 V class, please apply the 200 V to the operation circuit by sing control transtormer or 200 p power supply.


| odel |  | Rating | Dimensions (mm) Note 2) |  |  |  | $\begin{gathered} \text { External dimension } \\ \text { diagram } \\ \hline \end{gathered}$ | Connection diagram | $\begin{aligned} & \text { Thermal relay (Th-Ry) } \\ & \text { Setting value (A) } \end{aligned}$ | $\begin{gathered} \text { Approx. mass } \\ \text { (kg) } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard | With cover Note 1) |  | n/A1 | D/01 | E/E1 | F/F1 |  |  |  |  |
| DGP600W-B1 | DGP600W-C1 | ${ }^{1.75-3.44 \mathrm{kV}}$ | 283/303 | 207/192 | 620/700 | 725/780 | F | G |  |  |
| DGP600W-B2 | DGP600W-C2 | 3.70-7.44NV | 493/513 | 417/402 | 620/700 | 725/880 |  |  | 44 | 100 |
| DGP600W-B3 | DGP600W-C3 | ${ }^{1.90-8.7 \mathrm{kWV}}$ | 703/23 | 627/612 | 620/700 | 725/780 |  |  | ${ }_{6}^{71}$ | 150 150 |
|  |  | $\begin{array}{\|c\|} \hline 2.5 \Omega-10.5 \mathrm{~kW} \\ 5 \Omega-10 \mathrm{~kW} \\ \hline \end{array}$ |  |  |  |  |  |  | ${ }_{45}^{65}$ | 150 150 |
| DGP600W-B4 | DGP600W-C4 | 1.40-14kV | 913/933 | 837/822 | 620/700 | 725/780 |  |  | 110 | 200 |
| DGPbow-B4 | DGPbow-C4 | 1.78-10kW |  |  |  |  |  |  | 77 | 200 |

Note 1) The braking resistors are designed for indoor type. Please use them with dip cover in case of water drop. But please note it it not tor water proof protection type.
Note 2 ) $A, D, F, F$ are

## Selection of braking resistor





ND rating

| Voliage class | $\begin{gathered} \text { Applicable } \\ \text { motor } \\ (k W) \end{gathered}$ | $\begin{gathered} \text { Drive } \\ \text { type-form } \end{gathered}$ | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { Minimum } \\ \text { allowable } \\ \text { resistance }(\Omega) \end{array} \\ \hline \end{array}$ | PBR | DCP600 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | 5kW class | 10 kW class |
| 240 V | 0.75 | VFAS3-2004P | 7.9 | PBR-2007 (90W-200 ) |  | PBR7-008wo60$(270 W-602)$ | PBB7-017W060 (540W-60n) | - | - | - |
|  | 1.5 <br> .2 <br> 1 | VeAS3-2007P | 7.9 7.9 | PBR-2022 | - |  |  | PBR7-035W060 (1080W-60^) | PBR7-052WO15 <br> (1620W-15 ) | : |
|  | 4.0 | vFAS3-2022P | 7.9 | PB8-2037 |  | PBR7-008woso (270W-308) | PBRT-017 WO30 (540W-302) | PBR7-035W030 (1080W-30 ) |  |  |
|  | 5.5 | VFAS3-2037P | 7.9 | (90w-402) |  |  |  |  |  |  |
|  | 7.5 | VFASS3-2055 | ${ }_{5}^{5.3}$ | (130W-158) |  | PBR7-008W015$(270 W-15 \Omega)$ | PBR7-017W015$(540 \mathrm{~W}-15 \Omega)$ | PBR7-035W015$(1080 \mathrm{~W}-15 \Omega)$ |  | - |
|  | 11 | VFASS3-2075 | 5.3 |  |  |  |  |  |  |  |
|  | 15 18.5 | ${ }_{\text {VFAS }}$ VFA-21150P | 5 |  |  |  | $\underset{\substack{\text { PBP7-017W7R5 } \\(540 \mathrm{~W}-750)}}{ }$ | PBR7-035W7R5 (1080W-7.58) | PBR7-052W7R5 (1620W-7.5 $)$ | - |
|  | 22 | VFAS3-2185P | 4.5 | PBR7-017W3R7 (540W-3.75, ) |  |  |  |  |  | - |
|  | 30 | VFASS3-2220P | 1 |  |  |  |  | PBR7-035W3R7 (1080W -3.75 $)$ | PB77-052W3877$\left.(1620 \mathrm{~W}-7.75)^{2}\right)$ |  |
|  | 37 45 | VFAS3-2300P | 1 | PBR7-035W1R8 <br> (1080W-1.87 $)$ |  |  |  |  |  |  |
|  | 55 | VFAS3-2450P | 1 |  |  |  |  |  | PBRT-052W1R8 (1620W-1.87 $)$ | DGP600W-B4M/C4M (10kW-1.7 $\Omega$ ) |
|  | 75 | VFAS3-2550P | 1 |  | DGP6oow-BIMCIM |  |  |  |  |  |
| 480V | 0.75 | VFAS3-4004PC | 78 | $\begin{aligned} & \text { PBR-2007 } \\ & \text { (90W-2002) } \end{aligned}$ |  | PBR7-008W060$(270 \mathrm{~W}-60 \mathrm{O})$ | PBB7-017W060 (540W-60n) |  |  |  |
|  | 1.5 | VFASS-4077PC | 78 |  |  |  |  | PBR7-035W060 (1080W-60 $)$ | PBR7-052W060 (1620W-60 ) |  |
|  | 4.0 | VFAS3-4022 | 31.2 |  |  |  |  |  |  | - |
|  | 5.5 | VFAS3-4037PC | 31.2 | $\begin{gathered} (90 \mathrm{~W}-160 \Omega) \\ \hline \text { PBR7-004W060 } \\ (130 \mathrm{~W}-60 \Omega) \end{gathered}$ |  |  |  |  |  |  |
|  | 7.5 11 | VFAS3-0055PC | ${ }_{22.3}^{22.3}$ |  |  |  |  |  |  |  |
|  | 15 | VFAS3-4110PC | 15.6 | PB87-008wo30(270W-300) | - |  | PBR7-017woso (540W-302) | PBR7-035W030 (1080W-30』) | PBR7-052W030 (1620W-30 ) | - |
|  | 18.5 <br> 28 | VFAS3-4150PC | 15.6 <br> 15.6 |  |  |  |  |  |  |  |
|  | 30 | VFAS3-4220PC | 12 | PBR7-017W015$(540 W-15 \Omega)$ |  |  |  | PBR7-035W015 <br> $(1080 \mathrm{~W}-150)$ | PBR7-052W015(1620W-15Q) |  |
|  | 37 | VFAS3-4300PC | 12 |  |  |  |  |  |  |  |
|  | 45 | VFAS3-43770PC | 7.9 | PBR7-017W010 540W-10 2 ) |  | - |  | PBR7-035W010 080W-10』) | PBR7-052W010 (1620W-10ת) |  |
|  | 55 | VFAS3-4450PC | 2.5 | PBR7-017W7R5 (540W-7.5ת) |  | - |  | PBR7-035W7R5$(1080 W-7.5 \Omega)$ | PBR7-052W7R5 (1620W-7.5 $)$ | DGP600W-B3M/C3M$(10 \mathrm{~kW}-5 \Omega)$ |
|  | 75 | VFAS3-4550PC | 2.5 | PBR7-017W3R7 (540W-3.75.2) |  | - |  |  |  |  |
|  | 90 | VFAS3-4750PC | 2.5 | - | DGP600W-B2M/C2M$(7.4 \mathrm{~kW}-3.7 \Omega)$ | - |  | PBRT-035W3R77 $(1080 W-3.75 \Omega)$ | PBR7-052W3877 <br> $(1620 \mathrm{~W}-3.75 \mathrm{~F})$ |  |
|  | 110 | VFASS-4900PC | 1.9 | - |  | - | - |  |  | $\underset{(10.5 k W-2.52)}{\text { DGPG000-B3MC3M }}$ |
|  | 132 <br> 160 | VFASS-4110KPC | 1.9 | - |  | - |  |  |  |  |
|  | 220 | VFASS-4160KPC |  |  | DGProow-B3MC3M |  |  |  |  |  |
|  | 220 | VFAS3-4160KPC | 1.9 | - | (8.7\%W-1.90) | - |  | - | - |  |
|  | 250 280 | VFASS-4200KPC | 1 | - | DGP600W-B4M/C4M ( $14 \mathrm{~kW}-1.4 \Omega$ ) |  |  |  |  | DGP600W-B4M/C4M$(10 \mathrm{~kW}-1.7 \Omega)$ |
|  | 315 | VFAS3-4280KPC | 1 | - |  |  |  |  |  |  |
|  <br>  <br>  <br> Note s) The the beration. |  |  |  |  |  |  |  |  |  |  |

Braking unit

| Specification |  | P87-4132 | PB7-4200K |
| :---: | :---: | :---: | :---: |
| shold voltage | 240V Class | 379V |  |
| Maximum DC voltage | dias | 820V | ${ }_{825 \mathrm{~V}}$ |
| ximum braking power | 240 V clas | ${ }_{93 \mathrm{kV}}$ |  |

## External dimensions

$7-4132 \mathrm{~K}$ is mechanically mounted on the bottom side of the drive. Approx. mass 23kg


PB7-4200K is mechanically mounted on the left-hand side of the drive. Approx. mass 30kg

## Flange mounting kit

This options enable the heatsink parts of the backside of drive that generate much heat to be located at the outside of the panel This is effective for the small sizing of the totally-enclosed box by reducing the heat values inside the box.


| Model | Drive type-form | External dimension diagram | $\begin{array}{\|c} \text { Approx.mass } \\ (\mathrm{kg}) \end{array}$ |
| :---: | :---: | :---: | :---: |
| FOT0182 | VFAS3-2004P to VFAS3-2022P VFAS3-4004PC to VFAS3-4037PC | A | 1.3 |
| FOT019Z | VFAS3-2037P VFA3-4055PC, 4075PC | B | 1.5 |
| FOTO20z | VFAS3-2055P, 2075P VFAS3-4110PC to VFA3-4185PC | c | 1.9 |
| FOT021Z | VFAS3-2110P to VFAS3-2185P VFAS3-4220PC to VFAS3-4370PC | D | 6.8 |
| FOTO22Z | VFAS3-2220P to VFAS3-2370P VFAS3-4450PC to VFAS3-4750PC | E | 9.4 |
| FOT023Z | VFAS3-2450P, 2550P VFAS3-4900PC to 4132KPC | F | 15.5 |
| FOT0132 | VFAS3-4160KPC | G | 4.4 |
| FOT0142 | VFAS3-4200KPC to VFAS3-4280KPC | H | 4.7 |
| FOT015Z | VFAS3-4200KPC to VFAS3-4280KPC with using PB7-4200K | H | 4.9 |



## Door mounting kit

Type-form: SBP010Z

## - Mounting on the cabinet



Note) Operation panel juts out about 26 mm from the cabinet surface when the option is mounted on the cabinet surface.

## LED Extension panel



## USB communication conversion unit

## Type-form: USB001z

Drive can be management and setting on a PC
$\square$ Connection

: USB commu
2: Cabole is USB
Cable is USB cable (USB1.1.2 A-B connect type) for PC side.


Control power supply unit (Model: CPS002Z)

## External dimensions


 CPSoO2z can be used for
both 240 Vand 480 c lass.


Frequency meter <QS-60T ( $80 \mathrm{~Hz}-1 \mathrm{mAdc}$ )>


FRH-KIT
Potentiometer pane




## Totally enclosed box type for IP55 / UL type 12

IP55 / UL type 12 protection for direct mounting on wall.

## 

## - Standard specification



For users of the products : Our variable speed drives are designed to control the speeds of three-phase motors for general industry.

## Precautions

* Please read the instruction manual before installing or operating the drive unit.
* This product is intended for general purpose uses in industrial application. It cannot be used applications where may cause big impact on public uses, such as power plant and railway, and equipment which endanger human life or injury, such as nuclear power control, aviation, space flight control, traffic, safety device, amusement, or medical.
It may be considerable whether to apply, under the special condition or an application where strict quality control may not be required. Please contact our headquarters, branch, or local offices printed on the front and back covers of this catalogue.
* When exporting Toshiba variable speed drive separately or combined with your equipment, please be sure to satisfy the objective conditions and inform conditions listed in the export control policies, so called Catch All restrictions, which are set by the Ministry of Economy, Trade and Industry of Japan, and the appropriate export procedures must also be taken.
* Please use our product in applications where do not cause serious accidents or damages even if product is failure, or please use in environment where safety equipment is applicable or a backup circuit device is provided outside the system.
* Please do not use our product for any load other than three-phase motors.
* None of Toshiba, its subsidiaries, affiliates or agents, shall be liable for any physical damages, including, without limitation, malfunction, anomaly, breakdown or any other problem that may occur to any apparatus in which the Toshiba variable speed drive is incorporated or to any equipment that is used in combination with the Toshiba variable speed drive. Nor shall Toshiba, its subsidiaries, affiliates or agents be liable for any compensatory damages resulting from such utilization, including compensation for special, indirect, incidental, consequential, punitive or exemplary damages, or for loss of profit, income or data, even if the user has been advised or apprised of the likelihood of the occurrence of such loss or damages.

For further information, please contact your nearest Toshiba Representative or International Operations-Producer Goods.
The information in this brochure is subject to change without notice.

## Toshiba Industrial Products and Systems Corporation

## Global Sales Group Motor Drive Division

10th Floor, LAZONA Kawasaki TOSHIBA building, 72-34, Horikawa-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 212-8585, Japan
Tel:+81-44-520-0828 Fax:+81-44-520-0508
http://www.toshiba-tips.co.jp/en/

